Search results

Search for "chemical bonding" in Full Text gives 55 result(s) in Beilstein Journal of Nanotechnology.

Graphical Abstract
  • Fenton chemistry to produce hydroxyl radicals. ROS further accelerate the damage of the cell. “Valence” (V) is a factor that contributes to cell damage. It indicates the number of electrons in the outermost shell of an atom that are available for chemical bonding and is similar to other descriptors that
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • hydroxyl group by hydrogen or chemical bonding. The formation of silica particles from hydrolysis and condensation of VTES may occur on the GO surface and in water. The unreacted vinyl group in GO-VTES may have possible interactions with rubber particles through radical graft copolymerization, same as
PDF
Album
Full Research Paper
Published 05 Feb 2024

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • as a substrate. The lattice constant perpendicular to the interface as well as the atomic positions are fully relaxed. The calculated interfacial energies capture mainly the chemical bonding energy at the interface and the energy cost of internal distortions since lattice mismatch strains occur both
PDF
Album
Full Research Paper
Published 15 Nov 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • efficiency than rutile [14][31], while the highest photocatalytic activity has been found in mixed anatase/rutile TiO2 [13][32]. One possible explanation is that the difference in the crystal structure and chemical bonding results in different ionization potentials and electron affinities. Exploiting these
PDF
Album
Full Research Paper
Published 22 May 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • on HAP- and HAG-based composites. For HAGCs, the increase of Ts induces a decrease of porosity, especially for composites with 10% of bioglass, which can result from the devitrification and shrinkage of the glass and the additional chemical bonding between the phosphate glass and TCP. In contrast
PDF
Full Research Paper
Published 12 Dec 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • properties of BBR NPs UV–vis absorption spectra of the aqueous solutions of pure BBR and BBR NPs having the same concentration were measured in the wavelength range of 200–550 nm using a UV–vis spectrophotometer (6850 UV/Vis, Jenway). The chemical bonding characteristics of pure BBR powder and BBR NPs
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • tear of the switches, especially for CNT [16] and GR [29] switches. Permanent adhesion caused by the dielectric charging [52][53] and chemical bonding [24] are the focus of the research on improving the life cycles. At present, it is mainly solved by reducing the electrode contact area [14] or
PDF
Album
Review
Published 12 Apr 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • at 65 °C. We assume that the d33 increase induced by DC magnetic poling was due to the increased alignment of the β phase domains along the magnetic field direction, rather than due to an increase of the β phase content, as proposed in [25]. In particular, we speculate that chemical bonding can take
PDF
Album
Full Research Paper
Published 19 Nov 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • PTCDA and hBN/Cu(111) is weak and physisorptive [32] as opposed to the chemisorptive bond between PTCDA and Cu(111) [33]. Ultraviolet photoelectron spectroscopy (UPS) experiments showed that on the Cu(111) surface the chemical bonding leads to a filling of the LUMO [33]. In contrast, on hBN/Cu(111), the
PDF
Album
Full Research Paper
Published 03 Nov 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • Fermi level. The partial DOS of class Ox structures features hybridization of the electronic states, in comparison to the HOMO and LUMO of an isolated camphor. The hybridization implies chemical bonding between the molecule and the substrate in class Ox. Conversely, in class Hy, the electronic states
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • grafting of biomolecules via ionic bonding or adsorption and by the covalent conjugation of biomolecules via strong chemical bonding [17][18]. Noncovalent nanoparticle functionalization is relatively easy to undertake. However, the results are difficult to control and to reproduce presumably because of
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • component at the low binding energy side of the N 1s level (at approx. 397.6 eV) of the less ordered DBP layer is visible. We suggest that the new component may originate from the chemical bonding of the DBP molecules to the nitrogen atoms of the h-BN interlayer, which possibly reduces the molecular
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • in the Ce6 sample because the nitrogen contribution comes only from Ce6 in both cases. The spectrum analysis allows the two types of chemical bonding of nitrogen present in the Ce6 structure to be distinguished. The C 1s core level spectrum in the hybrid nanomaterial is mainly composed of a peak at
PDF
Album
Full Research Paper
Published 17 Jul 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • %, suggesting the presence of similar chemical-bonding structures. For example, both CDs possess the bonds of O–H and N–H stretching vibration at 3344 cm−1 and 3366 cm−1 [43][44], respectively. The presence of the O–H and N–H groups makes the CDs hydrophilic and improves the stability and dispersibility of the
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • additional mechanical (stiffness, elasticity), electrical (conductivity, surface potential), electrochemical (reactivity, mobility and activity), mechanoelectrical (piezoelectricity) and chemical (chemical bonding) material properties. In situ AFM imaging of the sample topography is often used to study the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • the study of the electronic structure and chemical bonding in materials [50][51][52][53]. The attenuation length (e−1) of ≈180 eV soft X-rays in Sb2S3 is ≈83 nm [54], which makes XES an excellent tool for non-destructively studying the near-surface regions and bulk of thin films [55]. For 50 nm thick
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • characterized by micro-Raman spectroscopy (JY-HR 800, 532 nm wavelength YAG laser). The element composition and chemical bonding of samples were examined by X-ray photoelectron spectroscopy (XPS, PHI-5702, Mg KR X-ray, 1253.6 eV). The pore size distribution was measured by the Barrett–Joyner–Halenda method
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • of 1T’-WTe2. The tungsten atoms deviate from the ideal octahedral sites in the octahedron due to the very strong chemical bonding, forming the distorted octahedral structure. Consequently, the Te atom layers become buckled in the distorted octahedral structure. X-ray photoelectron spectroscopy (XPS
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • application, but makes recycling difficult due to its poor processability, and low yields of energy and material. High-energy ball milling is initially used for comminution of the foam (PU-F) to a powder (PU-BM). This does not lead to any changes in the chemical bonding according to infrared spectra (Figure
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • Sr content was undertaken. In particular, high-resolution transmission electron microscopy and Raman spectroscopy served as the main experimental tools to analyze these new nanotubes. Density functional theory (DFT) calculations were used to study the chemical bonding and the stability of the SrxLa1
  • qualitative change in the chemical bonding between SrxLa1−xS and TaS2 parts of the lattice has been registered, while the MLC lattice was found to preserve its integrity after the geometry optimization. The intuitive charge transfer from the electron-rich LaS layer to the electrophilic TaS2 layer demonstrates
  • shown for LaS–TaS2. DFT calculations presenting the peculiarities of the chemical bonding within the SrxLa1−xS–TaS2 misfits, as a function of the Sr content. (a) Charge redistribution map at the interface formed between the Sr0.05La0.95S slab and single TaS2 layer. Red and blue colors on the map
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • different concentrations. The wettability and the chemical bonding of the surfaces were tested upon UV illumination and heating treatments. The results are in agreement with the proposed assumption that the oxidization of the trimethoxy(alkyl)silane could decrease the super-wettability transition time
  • nanoparticles were subjected to chemical bonding as Si–O–Ti with hydrolysing PFOS. The chemical bonding is verified by the Fourier transfer infrared (FTIR) spectra of TiO2 and TiO2–PFOS coated glass surfaces, as shown in Figure 2. The asymmetric stretching vibration of the Si–O–Ti species was displayed at the
  • –CF2− and –CF3 groups appeared in the FTIR spectra of Al2O3–PFOS but without the peak at 1065 cm−1, which indicates that there was probably no chemical bonding between Al2O3 and PFOS, suggesting the physical adhesion between Al2O3 nanoparticles and PFOS. Wettability switching by UV illumination and
PDF
Album
Full Research Paper
Published 15 Apr 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • –O (286.3 eV) peaks in the C 1s pattern confirm the oxide nature of RGO sheets. In addition to the C–S bonding, O-containing groups also help retain sulfur via S–O bonding, as revealed by the peak located at 164.7 eV in the S 2p spectrum (Figure 4e). The strong chemical bonding of C–S and S–O can
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • ). Tribochemical characteristics of the tip–surface pairings We suggest that the intermittent friction peaks (Figure 2c) were caused by chemical bonding between tip and surface after local damage of a passivating layer on tip and/or surface. To clarify the origin of the large stick–slip events and of the increase
PDF
Album
Full Research Paper
Published 05 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • hydrogen titanates depends on the substrates. The TiO2(B) trunk may guide the TiO2 crystallization. The chemical bonding states of the TGN-branch 4 h were determined by X-ray photoelectron spectra (XPS). Elements of Ti, C and O have been detected in the XPS survey spectra (Figure 5a). The binding energy of
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018
Other Beilstein-Institut Open Science Activities